علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه اقلیدسی خلاصه می شد.
هندسه اقلیدسی شاخه ای از ریاضیات
در هندسه اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می کردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط، یک خط و تنها یک خط می توان موازی با خط مفروض رسم کرد. برخی از ریاضیدانان مدعی بودند که این اصل را می توان به عنوان یک قضیه ثابت کرد. در این راه بسیاری از ریاضیدانان تلاش زیادی کردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات "اصل توازی" مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان کردند و هندسه های نااقلیدسی شکل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید.
اصطلاحات بنیادی ریاضیات
طی قرنهای متمادی ریاضیدانان اشیاء و موضوع های مورد مطلعه ی خود از قبیل نقطه و خط و عدد را همچون کمیت هایی در نظر می گرفتند که در نفس خویش وجود دارند. این موجودات همواره همه ی کوششهای را که برای تعریف و توصیف شایسته ی آنان انجام می شد را با شکست مواجه می ساختند. بتدریج این نکته بر ریاضیدانان قرن نوزدهم آشکار گردید که تعیین مفهوم این موجودات نمی تواند در داخل ریاضیات معنایی داشته باشد. حتی اگر اصولاً دارای معنایی باشند.
بنابراین، اینکه اعداد، نقطه و خط در واقع چه هستند در علوم ریاضی نه قابل بحث است و نه احتیاجی به این بحث هست. براتراند راسل گفته بود که ریاضیات موضوعی است که در آن نه می دانیم از چه سخن می گوییم و نه می دانیم آنچه که می گوییم درست است.
دلیل آن این است که برخی از اصطلاحات اولیه نظیر نقطه، خط و صفحه تعریف نشده اند و ممکن است به جای آنها اصطلاحات دیگری بگذاریم بی آنکه در درستی نتایج تاثیری داشته باشد. مثلاً می توانیم به جای آنکه بگوییم دو نقطه فقط یک خط را مشخص می کند، می توانیم بگوییم دو آلفا یک بتا را مشخص می کند. با وجود تغییری که در اصطلاحات دادیم، باز هم اثبات همه ی قضایای ما معتبر خواهد ماند، زیرا که دلیل های درست به شکل نمودار بسته نیستند، بلکه فقط به اصول موضوع که وضع شده اند و قواعد منطق بستگی دارند.
بنابراین، ریاضیات تمرینی است کاملاً صوری برای استخراج برخی نتایج از بعضی مقدمات صوری. ریاضیات احکامی می سازند به صورت هرگاه چنین باشد، آنگاه چنان خواهد شد و اساساً در آن صحبتی از معنی فرضها یا راست بودن آنها نیست. این دیدگاه (صوریگرایی) با عقیده کهن تری که ریاضیات را حقیقت محض می پنداشت و کشف هندسه های نااقلیدسی بنای آن را درهم ریخت، جدایی اساسی دارد. این کشف اثر آزادی بخشی بر ریاضیدانان داشت.
اشکالات وارد بر هندسه اقلیدسی
هندسه اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت:
اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید.
اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد.
اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد.
اصل چهارم - همه ی زوایای قائمه با هم مساوی اند.
اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.
اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت، به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل!
بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد.
در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویوئی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرند و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثبات خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید.
یانوش بویوئی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود .
و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازی ها را رها کنی.
ولی یانوش جوان از اخطار پدیر نهرسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال 1823 پدرش را محرمانه در جریان کشف خود قرار داد و در سال 1831 اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گاوس فرستاد. بعد معلوم شد که گاوس خود مستقلاً آن را کشف کرده است.
بعدها مشخص شد که لباچفسکی در سال 1829 کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بوئی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویوئی و لباچفسکی ثبت گردید.
هندسه های نا اقلیدسی
اساساً هندسه نااقلیدسی چیست؟ هر هندسه ای غیر از اقلیدسی را نا اقلیدسی می نامند. از این گونه هندسه ها تا به حال زیاد شناخته شده است. اختلاف بین هندسه های نااقلیدسی و اقلیدسی تنها در اصل توازی است. در هندسه اقلیدسی به ازای هر خط و هر نقطه نا واقع بر آن یک خط می توان موازی با آن رسم کرد.
نقیض این اصل را به دو صورت می توان در نظر گرفت. تعداد خطوط موازی که از یک نقطه نا واقع بر آن، می توان رسم کرد، بیش از یکی است. و یا اصلاً خطوط موازی وجود ندارند. با توجه به این دو نقیض، هندسه های نا اقلیدسی را می توان به دو گروه تقسیم کرد:
یک - هندسه های هذلولوی
هندسه های هذلولوی توسط بویوئی و لباچفسکی بطور مستقل و همزمان کشف گردید.
اصل توازی هندسه هذلولوی - از یک خط و یک نقطه ی نا واقع بر آن بی شمار خط موازی با خط مفروض می توان رسم کرد.
دو - هندسه های بیضوی
در سال 1854 فریدریش برنهارد ریمان نشان داد که اگر نامتناهی بودن خط مستقیم کنار گذاشته شود و صرفاً بی کرانگی آن مورد پذیرش واقع شود، آنگاه با چند جرح و تعدیل جزئی اصول موضوعه دیگر، هندسه سازگار نااقلیدسی دیگری را می توان به دست آورد. پس از این تغییرات اصل توازی هندسه بیضوی بصورت زیر ارائه گردید.
اصل توازی هندسه بیضوی - از یک نقطه ناواقع بر یک خط نمی توان خطی به موازات خط مفروض رسم کرد.
یعنی در هندسه بیضوی، خطوط موازی وجود ندارد. با تجسم سطح یک کره می توان سطحی شبیه سطح بیضوی در نظر گرفت. این سطح کروی را مشابه یک صفحه در نظر می گیرند. در اینجا خطوط با دایره های عظمیه کره نمایش داده می شوند. بنابراین خط ژئودزیک یا مساحتی در هندسه بیضوی بخشی از یک دایره عظیمه است.
در هندسه بیضوی مجموع زوایای یک مثلث بیشتر از 180 درجه است. در هندسه بیضوی با حرکت از یک نقطه و پیمودن یک خط مستقیم در آن صفحه، می توان به نقطه ی اول باز گشت. همچنین می توان دید که در هندسه بیضوی نسبت محیط یک دایره به قطر آن همواره کمتر از عدد پی است.
مفهوم و درک شهودی انحنای فضا
سئوال اساسی این است که کدام یک از این هندسه های اقلیدسی یا نااقلیدسی درست است؟
پاسخ صریح و روشن این است که باید انحنای یک سطح را تعیین کنیم تا مشخص شود کدام یک درست است. بهترین دانشی که می تواند در شناخت نوع هندسه یک سطح مورد استفاده و استناد قرار گیرد، فیزیک است. یک صفحه ی کاغذ بردارید و در روی آن دو خط متقاطع رسم کنید. سپس انحنای این خطوط را در آن نقطه تعیین کرده و با توجه به تعریف انحنای سطح حاصلضرب آن را به دست می آوریم. اگر مقدار انحنا برابر صفر شد، صفحه اقلیدسی است، اگر منفی شد می گوییم صفحه هذلولوی است و در صورتی که مثبت شود، ادعا می کنیم که صفحه بیضوی است .
در کارهای معمولی مهندسی نظیر ایجاد ساختمان یا ساختن یک سد بر روی رودخانه، انحنای سطح مورد نظر برابر صفر است، به همین دلیل در طول تاریخ مهندسین همواره از هندسه اقلیدسی استفاده کرده اند و با هیچگونه مشکلی هم مواجه نشدند. یا برای نقشه برداری از سطح یک کشور اصول هندسه ی اقلیدسی را بکار می برند و فراز و نشیب نقاط مختلف آن را مشخص می کنند. در این محاسبات ما می توانیم از خط کش هایی که در آزمایشگاه یا کارخانه ها ساخته می شود، استفاده کنیم. حال سئوال این است که اگر خط کش مورد استفاده ی ما تحت تاثیر شرایط محیطی قرار بگیرد چه باید کرد؟ اما می دانیم از هر ماده ای که برای ساختن خط کش استفاده کنیم، شرایط فیزیکی محیط بر روی آن اثر می گذارد. البته با توجه با تاثیر محیط بر روی خط کش ما تلاش می کنیم از بهترین ماده ی ممکن استفاده کنیم. بهمین دلیل چوب از لاستیک بهتر است و آهن بهتر از چوب است.
اما برای مصافتهای دور نظیر فواصل نجومی از چه خط کشی (متری) می توانیم استفاده کنیم؟ طبیعی است که در اینجا هیچ خط کشی وجود ندارد که بتوانیم با استفاده از آن فاصله ی بین زمین و ماه یا ستارگان را اندازه بگیریم. بنابراین باید به سایر امکاناتی توجه کنیم که در عمل قابل استفاده است. اما در اینجا چه امکاناتی داریم؟ بهترین ابزار شناخته شده امواج الکترومغناطیسی است. اگر مسیر نور در فضا خط مستقیم باشد، در اینصورت با جرت می توانیم ادعا کنیم که فضا اقلیدسی است. برای پی بردن به نوع انحنای فضا باید مسیر پرتو نوری را مورد بررسی قرار دهیم .
اما تجربه نشان می دهد که مسیر نور هنگام عبور از کنار ماده یعنی زمانی که از یک میدان گرانشی عبور می کند، خط مستقیم نیست، بلکه منحنی است. بنابراین فضای اطراف اجسام اقلیدسی نیست. به عبارت دیگر ساختار هندسی فضا نااقلیدسی است.
هندسه نااقلیدسی و انحنای فضا
در اين بخش ميتوانيد در مورد رياضيات در سطوح و گرايشهاي مختلف به بحث بپردازيد
مدیر انجمن: شوراي نظارت
پرش به
- بخشهاي داخلي
- ↲ اخبار و قوانين سايت
- ↲ سوالات، پيشنهادات و انتقادات
- ↲ مرکز جوامع مجازي - CentralClubs Network
- ↲ سرويس ميزباني وب - CentralClubs Hosting
- ↲ مجله الکترونيکي مرکز انجمنهاي تخصصي
- بخش تلفن همراه
- ↲ نرم افزار تلفن همراه
- ↲ Symbian App
- ↲ Android App
- ↲ Windown Phone App
- ↲ iOS App
- ↲ JAVA Mobile App
- ↲ بازيهاي تلفن همراه
- ↲ Symbian Games
- ↲ Android Games
- ↲ iOS Games
- ↲ Windows Phone Games
- ↲ JAVA Mobile Games
- ↲ گوشيهاي تلفن همراه
- ↲ Sony
- ↲ Samsung
- ↲ GLX
- ↲ Dimo
- ↲ Huawei
- ↲ Motorola
- ↲ Nokia
- ↲ گوشيهاي متفرقه
- ↲ سرگرميهاي تلفن همراه
- ↲ خدمات و سرويسهاي مخابراتي
- ↲ تازه ها و اخبار تلفن همراه
- ↲ مطالب كاربردي تلفن همراه
- ↲ متفرقه در مورد تلفن همراه
- ↲ سوالات و اشکالات تلفن همراه
- بخش كامپيوتر
- ↲ نرم افزار كامپيوتر
- ↲ گرافيک و طراحي کامپيوتري
- ↲ طراحي صفحات اينترنتي
- ↲ سوالات و اشکالات نرم افزاري
- ↲ برنامه نويسي
- ↲ C Base Programming
- ↲ Dot Net Programming
- ↲ Web Programming
- ↲ Other Programming
- ↲ Software Engineering
- ↲ Java Programming
- ↲ Database Programming
- ↲ سخت افزار كامپيوتر
- ↲ امنيت و شبكه
- ↲ امنيت
- ↲ شبکه
- ↲ تازه ها و اخبار دنياي کامپيوتر
- ↲ مطالب كاربردي كامپيوتر
- ↲ متفرقه در مورد کامپيوتر
- بخش هوا فضا
- ↲ نيروي هوايي ايران
- ↲ متفرقه درباره نیروی هوایی
- ↲ نیروی هوایی و سازندگی
- ↲ حماسه و حماسه آفرینان نيروي هوايي
- ↲ تیزپروازان در بند
- ↲ شهدا و جانباختگان نیروی هوایی
- ↲ عملیاتهاي نيروي هوايي
- ↲ دستاوردها و اخبار نيروي هوايي
- ↲ تاریخچه نیروی هوایی در ایران
- ↲ هوانيروز ايران
- ↲ حماسه و حماسه آفرينان هوانيروز
- ↲ شهدا و جانباختگان هوانيروز
- ↲ دستاوردها و اخبار هوانيروز
- ↲ هواپيماها
- ↲ هواپيماهاي نظامي
- ↲ هواپيماهاي غير نظامي
- ↲ هواپيماهاي بدون سرنشين
- ↲ بالگردها
- ↲ بالگردهاي نظامي
- ↲ بالگردهاي غير نظامي
- ↲ بالگردهاي بدون سرنشين
- ↲ اخبار بالگردها
- ↲ تسليحات هوايي
- ↲ موشكهاي هوا به هوا
- ↲ موشكهاي هوا به زمين
- ↲ موشکهاي دريايي
- ↲ موشکهاي زمين به هوا
- ↲ موشکهاي زمين به زمين
- ↲ ديگر مباحث هوانوردي
- ↲ الکترونيک هواپيمايي
- ↲ موتورهاي هوايي
- ↲ شبيه سازهاي پرواز
- ↲ گالري تصاوير هوافضا
- ↲ تصاوير هواپيماهاي جنگنده
- ↲ کليپهاي هوايي
- ↲ تصاوير هواپيماهاي بمب افکن
- ↲ تصاوير هواپيماهاي ترابري
- ↲ تصاوير هواپيماهاي مسافربري
- ↲ تصاوير هواپيماهاي شناسايي
- ↲ تصاوير بالگردهاي نظامي
- ↲ تصاوير بالگردهاي غير نظامي
- ↲ تصاوير نمايشگاههاي هوايي
- ↲ تصاوير متفرقه هوايي
- ↲ انجمن نجوم
- ↲ منظومه شمسي
- ↲ كيهانشناسي
- ↲ گالري تصاوير نجوم
- ↲ اخبار نجوم
- ↲ اخبار هوافضا و هوانوردي
- ↲ مدرسه هوانوردي
- ↲ كتابخانهي هوا فضا
- ↲ متفرقه در مورد هوا فضا
- بخش جنگ افزار
- ↲ ادوات زميني
- ↲ ادوات زرهي
- ↲ تجهيزات انفرادي
- ↲ تسليحات سنگين و توپخانهاي
- ↲ خودروهاي نظامي
- ↲ تسليحات ضد زره
- ↲ ادوات دريايي
- ↲ ناوهاي هواپيمابر
- ↲ ناوشکنها
- ↲ رزم ناوها
- ↲ ناوچهها
- ↲ زيردرياييها
- ↲ تجهيزات و تسليحات دريايي
- ↲ ساير ادوات دريايي
- ↲ گالري تجهيزات و ادوات دريايي
- ↲ اخبار ادوات دريايي
- ↲ اخبار نظامي
- ↲ گالري نظامي
- ↲ متفرقه در مورد جنگ افزار
- بخش دفاع مقدس
- ↲ حماسه دفاع مقدس
- ↲ تخريب و خنثي سازي
- بخش خودرو و وسايل نقليه
- ↲ مباحث فنی و تخصصی خودرو
- ↲ معرفي خودرو
- ↲ تازهها و اخبار خودرويي
- ↲ گالري خودرو
- ↲ متفرقه وسايل نقليه
- بخش پزشکي
- ↲ پزشكي و درمان
- ↲ پزشکي
- ↲ سوال پزشکي
- ↲ بهداشت
- ↲ بهداشت عمومي
- ↲ بهداشت مواد غذايي
- ↲ لوازم آرايشي و بهداشتي
- ↲ متفرقه در مورد پزشکي
- ↲ روانشناسي و روان پزشكي
- بخش فرهنگ، تمدن و هنر
- ↲ فرهنگي هنري
- ↲ شعر و ادبيات
- ↲ فيلم و سينما
- ↲ هنرهاي نمايشي
- ↲ فرهنگ هنرهاي نمايشي
- ↲ موسيقي
- ↲ عكس و نقاشي
- ↲ تاريخ، فرهنگ و تمدن
- ↲ تاريخ ايران
- ↲ تاريخ جهان
- ↲ فلسفه
- ↲ زبانهاي خارجي
- ↲ زبان انگليسي
- ↲ زبان اسپانيايي
- ↲ هنر آشپزي
- بخش علم، فناوري و آموزش
- ↲ انجمن علم و فناوري
- ↲ انجمن آموزش
- ↲ کتاب و فرهنگ مطالعه
- ↲ دانش عمومی
- ↲ کنکور و دانشگاه
- ↲ جامعه شناسي
- ↲ خانواده
- ↲ متفرقه جامعه شناسي
- ↲ حقوق و قضا
- ↲ علوم
- ↲ فيزيک
- ↲ شيمي
- ↲ رياضي
- ↲ متالورژي
- ↲ پليمر
- ↲ علوم کشاورزي
- ↲ گياهان زراعي و باغي
- ↲ گياهان دارويي
- ↲ طبیعت و محیط زیست
- ↲ زيست شناسي
- ↲ عمران
- ↲ بتن و سازههاي بتني
- ↲ معماري و شهرسازي
- ↲ سبکها و مشاهير معماري
- ↲ شهرسازي
- ↲ معماري داخلي
- ↲ معماري منظر
- بخش الکترونيک و رباتیک
- ↲ مفاهیم اولیه و پایه در الکترونیک
- ↲ نرم افزارهای کمکی الکترونیک
- ↲ مدارهای مجتمع
- ↲ سوالات و پرسشهای مفاهیم پایه
- ↲ مدارات ساده و آسان
- ↲ مدارهای آنالوگ و دیجیتال
- ↲ شبیه ساز و طراحی مدار
- ↲ مدارات صوتی
- ↲ مدارات، منابع تغذیه سویچینگ و اینورتوری
- ↲ مدارات مخابراتی
- ↲ میکروکنترلرهای AVR
- ↲ آموزش و مثالها AVR
- ↲ طرح آماده و کامل شده AVR
- ↲ میکروکنترلرهای ARM
- ↲ سایر میکروکنترولرها و پردازندهها
- ↲ سایر میکروکنترلرها
- ↲ مدار مجتمع برنامه پذیر FPGA
- ↲ رباتیک
- ↲ اخبار و مصاحبه ها در رباتیک
- ↲ آموزش و مقالات رباتیک
- ↲ پروژهها تکمیل شده رباتیک
- ↲ مدارها و مکانیک در رباتیک
- ↲ رباتهای پرنده
- ↲ برق و الکترونیک عمومی
- ↲ تعمیر لوازم برقی
- ↲ اخبار برق و الکترونیک
- بخش بازيهاي رايانهاي
- ↲ بازيهاي رايانهاي
- ↲ كنسولهاي بازي
- ↲ PSP
- ↲ اخبار بازيها
- بخش تجاري اقتصادي
- ↲ بخش اقتصادی و مالی
- ↲ تجارت آنلاين
- ↲ بورس
- ↲ تحلیل و سیگنال روز
- ↲ کار آفرینی
- بخشهاي متفرقه
- ↲ بخش ويژه
- ↲ ساير گفتگوها
- ↲ صندلي داغ
- ↲ اخبار و حوادث
- ↲ انجمن ورزش
- ↲ آکواريوم و ماهيهاي زينتي
- ↲ معرفي سايتها و وبلاگها
